Strichartz estimates for the one-dimensional wave equation
نویسندگان
چکیده
منابع مشابه
Strichartz estimates for the wave equation on Riemannian symmetric manifolds
We prove Strichartz type estimates for solutions of the homogeneous wave equation on Riemannian symmetric spaces. Our results generalize those of Ginibre and Velo in [7].
متن کاملCounterexamples to Strichartz estimates for the wave equation in domains
Let Ω be the upper half plane {(x, y) ∈ R, x > 0, y ∈ R}. Define the Laplacian on Ω to be ∆D = ∂ 2 x + (1 + x)∂ 2 y , together with Dirichlet boundary conditions on ∂Ω: one may easily see that Ω, with the metric inherited from ∆D, is a strictly convex domain. We shall prove that, in such a domain Ω, Strichartz estimates for the wave equation suffer losses when compared to the usual case Ω = R, ...
متن کاملStrichartz Estimates for the Wave Equation on Manifolds with Boundary
Strichartz estimates are well established on flat Euclidean space, where M = R and gij = δij . In that case, one can obtain a global estimate with T = ∞; see for example Strichartz [27], Ginibre and Velo [9], Lindblad and Sogge [16], Keel and Tao [14], and references therein. However, for general manifolds phenomena such as trapped geodesics and finiteness of volume can preclude the development...
متن کاملStrichartz Estimates for the Wave Equation on Flat Cones
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius ρ > 0, the manifold R+ × ( R / 2πρZ ) equipped with the metric g(r, θ) = dr2 + r2 dθ2. Using explicit representations of the solution operator in regions related to flat wave propagation and diffraction by the cone point, we prove dispersive estimates and hence scale invariant Strichartz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2020
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/8075